Available dataset : homogeneous meteorological data

We give access to homogeneous monthly values of temperature and precipitation for 14 stations from 1864 until today. Yearly values are averaged for whole Switzerland Since 1864 and are now on the DAPLAB !

Data set


The file is a .txt and contains a four rows headers.
MeteoSchweiz / MeteoSuisse / MeteoSvizzera / MeteoSwiss


Data are separated by a “|” and do not contains blankspace.

# Name Example Description
1 stn BAS
Station's names
BAS: Basel / Binningen
BER: Bern / Zollikofen
CHM: Chaumont
CHD: Château-d'Oex
GSB: Col du Grand St-Bernard
DAV: Davos
ENG: Engelberg
GVE: Genève-Cointrin
LUG: Lugano
PAY: Payerne
SIA: Segl-Maria
SIO: Sion
SAE: Säntis
SMA: Zürich / Fluntern
2 time 201503 Year and months of the measure. Format: yyyyMM
3 rhs150m0 36.9 Sum of precipitation in mm at 1.5 meter
4 ths200m0 4.5 Mean temperature in degree Celsius at 2 meters

Data update

On OpenData, the files are created every day, however the data set changes monthly.

Data Access


Some of stations do not have data like Payerne or others stations did not exist in 1864. In consequence, data must be filtered before used for statistics.


Creating a database, a table and loading data

Note: In order to have this tutorial to work for everybody, it will create a database prefixed by your username (${env:USER] inside hive)
1. Downloading the data and remove the header

$ wget http://data.geo.admin.ch.s3.amazonaws.com/ch.meteoschweiz.homogenereihen/VQAA60.txt
$ tail -n +5 VQAA60.txt > VQAA60.txt.new && mv VQAA60.txt.new VQAA60.txt

2. Copy the locally unzipped data into your home folder in HDFS (the tailing “.” points you to /user/$(whoami)). SeeHDFSHelloWorld if you’re not familiar with HDFS.

$ hdfs dfs -copyFromLocal VQAA60.txt

3. Create a database in Hive

$ hive

create database ${env:USER}_meteo;

4. Create a temp table to load the file into

$ hive

use ${env:USER}_meteo;
create table temp_meteo (col_value STRING);
LOAD DATA INPATH '/user/${env:USER}/VQAA60.txt' OVERWRITE INTO TABLE temp_meteo;

5. Create the final table and insert the data into. The date are in format YYYYMM, they will be cast in string because of the request language. It is easier to extract the year from a string than an int

$ hive

use ${env:USER}_meteo;
create table meteo (station STRING, date STRING, precipitation FLOAT, temperature FLOAT);
insert overwrite table meteo  
    regexp_extract(col_value, '^(?:([^\|]*)\.){1}', 1) station,  
    regexp_extract(col_value, '^(?:([^\|]*)\.){2}', 1) date,  
    regexp_extract(col_value, '^(?:([^\|]*)\.){3}', 1) precipitation,
    regexp_extract(col_value, '^(?:([^\|]*)\.){4}', 1) temperature  
  from temp_meteo;

6. Run your first query

$ hive --database ${USER}_meteo
SELECT station, avg(precipitation) as mean_precipitation, avg(temperature) as mean_temperature FROM meteo GROUP BY station;

7. Woot!
8. Run a more complex query. Summerize the precipitation by station and year

$ hive --database ${USER}_meteo
SELECT station, dateYear, sum(precipitation) as sumPre 
FROM (SELECT substring(date,1,4) as dateYear, precipitation, station FROM meteo) as T1 
GROUP BY dateYear, station 
ORDER BY sumPre desc